3.388 \(\int \frac{1}{(d+e x^2) \sqrt{a+b x^2-c x^4}} \, dx\)

Optimal. Leaf size=197 \[ \frac{\sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \Pi \left (-\frac{\left (b+\sqrt{b^2+4 a c}\right ) e}{2 c d};\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{\sqrt{2} \sqrt{c} d \sqrt{a+b x^2-c x^4}} \]

[Out]

(Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*
a*c])]*EllipticPi[-((b + Sqrt[b^2 + 4*a*c])*e)/(2*c*d), ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]
], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(Sqrt[2]*Sqrt[c]*d*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.157439, antiderivative size = 197, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.074, Rules used = {1220, 537} \[ \frac{\sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \Pi \left (-\frac{\left (b+\sqrt{b^2+4 a c}\right ) e}{2 c d};\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{\sqrt{2} \sqrt{c} d \sqrt{a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x^2)*Sqrt[a + b*x^2 - c*x^4]),x]

[Out]

(Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*
a*c])]*EllipticPi[-((b + Sqrt[b^2 + 4*a*c])*e)/(2*c*d), ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]
], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(Sqrt[2]*Sqrt[c]*d*Sqrt[a + b*x^2 - c*x^4])

Rule 1220

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
 2]}, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[1/((d + e*x^
2)*Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 -
 4*a*c, 0] && NegQ[c/a]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{1}{\left (d+e x^2\right ) \sqrt{a+b x^2-c x^4}} \, dx &=\frac{\left (\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{1}{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}} \left (d+e x^2\right )} \, dx}{\sqrt{a+b x^2-c x^4}}\\ &=\frac{\sqrt{b+\sqrt{b^2+4 a c}} \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}} \Pi \left (-\frac{\left (b+\sqrt{b^2+4 a c}\right ) e}{2 c d};\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{\sqrt{2} \sqrt{c} d \sqrt{a+b x^2-c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.229555, size = 205, normalized size = 1.04 \[ -\frac{i \sqrt{\frac{2 c x^2}{\sqrt{4 a c+b^2}-b}+1} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \Pi \left (-\frac{\left (b+\sqrt{b^2+4 a c}\right ) e}{2 c d};i \sinh ^{-1}\left (\sqrt{2} \sqrt{-\frac{c}{b+\sqrt{b^2+4 a c}}} x\right )|-\frac{b+\sqrt{b^2+4 a c}}{\sqrt{b^2+4 a c}-b}\right )}{\sqrt{2} d \sqrt{-\frac{c}{\sqrt{4 a c+b^2}+b}} \sqrt{a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x^2)*Sqrt[a + b*x^2 - c*x^4]),x]

[Out]

((-I)*Sqrt[1 + (2*c*x^2)/(-b + Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticPi[-((b
 + Sqrt[b^2 + 4*a*c])*e)/(2*c*d), I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*x], -((b + Sqrt[b^2 + 4
*a*c])/(-b + Sqrt[b^2 + 4*a*c]))])/(Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*d*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 201, normalized size = 1. \begin{align*}{\frac{\sqrt{2}}{d}\sqrt{1+{\frac{b{x}^{2}}{2\,a}}-{\frac{{x}^{2}}{2\,a}\sqrt{4\,ac+{b}^{2}}}}\sqrt{1+{\frac{b{x}^{2}}{2\,a}}+{\frac{{x}^{2}}{2\,a}\sqrt{4\,ac+{b}^{2}}}}{\it EllipticPi} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}},-2\,{\frac{ae}{ \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) d}},{\sqrt{2}\sqrt{-{\frac{1}{2\,a} \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) }}{\frac{1}{\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}}}} \right ){\frac{1}{\sqrt{-{\frac{b}{a}}+{\frac{1}{a}\sqrt{4\,ac+{b}^{2}}}}}}{\frac{1}{\sqrt{-c{x}^{4}+b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/d*2^(1/2)/(-b/a+1/a*(4*a*c+b^2)^(1/2))^(1/2)*(1+1/2/a*x^2*b-1/2/a*x^2*(4*a*c+b^2)^(1/2))^(1/2)*(1+1/2/a*x^2*
b+1/2/a*x^2*(4*a*c+b^2)^(1/2))^(1/2)/(-c*x^4+b*x^2+a)^(1/2)*EllipticPi(1/2*x*2^(1/2)*((-b+(4*a*c+b^2)^(1/2))/a
)^(1/2),-2/(-b+(4*a*c+b^2)^(1/2))*a/d*e,(-1/2*(b+(4*a*c+b^2)^(1/2))/a)^(1/2)*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a
)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-c*x^4 + b*x^2 + a)*(e*x^2 + d)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x^{2}\right ) \sqrt{a + b x^{2} - c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x**2+d)/(-c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/((d + e*x**2)*sqrt(a + b*x**2 - c*x**4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-c*x^4 + b*x^2 + a)*(e*x^2 + d)), x)